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Frequency GHz

Fig. 3. Numerical experiment reflection coefficient foramicrostrip line.
Solid line: first order ABC, C.<m= 7.12. Dotted line: first order ABC, e,,ti
= 8.12. Dashed line: DBC, e,.~1 =7.12, .s,,fz = 8.50.

tion domain for both DBC and Mur’s boundary condition. In the

DBC, e,.ffl = 7.12 ande,.ffz = 8.50 areused todetermine the two

velocities. In Mur’s first-order ABC, ~,,f= 7.12, 8.12 are used to

determine the velocity, respectively. From this result we see that

in the time domain the reflections from the computation domain

boundary aregreatly reduced using DBC: in fact, DBC reflections

are an order of magnitude less than those from the first-order

boundary conditions. The numerical reflection coefficients for both

DBCandthe first-order bounda~conditions aregiven in Fig. 3.

This figure shows that DBC absorbs the wave over a large fre-

quency band, i.e., the reflection coefficient is less than –45 dB

from O to 20 GHz, where E,.f I = 7.12 and C,.fz = 8.50 are used

for the DBC. For the first-order condition, the reflection coeffi-

cients are less than –45 dB only over the ranges from O to 3 GHz

when e,.ti = 7.12, or from 5 to 8 GHz when C..f = 8.12.

IV. CONCLUSION

The dispersive bounda~y condition allows the dispersion of waves

to be incorporated into the design of an absorbing boundary con-

dition. This feature can be very useful when the dispersion for a

major outgoing wave is known. Both the validity and the efficiency

of the DBC have been demonstrated by carrying out analyses on a

microstrip line. With DBS, the memory requirement for FD-TD

analyses of microstrip components and antennas can be greatly re-

duced.

The main difference between DBC and ABC is that DBC is de-

signed to optimize the boundary condition according to the disper-

sion characteristics of waves, while ABC is designed to optimize

the boundary condition according to the propagation direction of

the waves. The introduction of the concepts which are the basis of

DBC is specially important for study of absorption for strongly

dispersive waves, such as occurs in conductor waveguides and di-

electric waveguides. The further application of the proposed DBC

to waveguide component analysis has been investigated in a sepa-

rate paper [10]. Based on the ideas presented in this paper, some

ABC’s can be modified into DBC ‘s.
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New Broadband Rectangular Waveguide with

L-Shaped Septa

Pradip Kumar Saha and Debatosh Guha

Abstract—Rectangular waveguides with double L-shaped septa—
variants of Double T-Septa Guides (DTSG) [11, [21—have been ana-
lyzed theoretically and are proposed as new broadband waveguides.

Results indicate that significant improvement in cutoff wavelength and
bandwidtb in particular sbordd be available with L-shaped septa in

antisymmetric configuration. “

I. INTRODUCTION

Recently rectangular waveguides with T-shaped septa have been

proposed as alternative to ridged waveguides [1], [2]. Theoretical

analysis using the Ritz–Galerkin technique showed that the lowest

TE mode of such a guide has superior cutoff, bandwidth and

impedance characteristics. It was further shown theoretically that

dielectric loading of the septa-gap can improve the cutoff and band-

width significantly [3]. Experimental verification of these proper-

ties and formulations of the problems by other methods have been

reported in the literature [4]-[8].

In this paper we propose another type of broadband septum

waveguides—a variant of the previously reported Double T-Septa

Guide (DTSG) [1]. These guides have L-shaped septa located an-
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Fig. 1. (a) Double L-Septa Guide: DLSG 1, (b) Double L-Septa Guide:

DLSG2. The cross section is divided into subregions I-VII. The apertures
are marked 1–6.

tisymmetrically as shown in Fig. 1. We propose to call them Dou-

ble L-Septa Guides (DLSG). The guide in Fig. 1(a) has two com-

pletely overlapping septa and will be referred to as DLSG 1. The

other type, shown in Fig. 1(b), has two antisymmetric partially

overlapping septa and will be referred to as DLSG2.

We present the theoretical cutoff and bandwidth characteristics

of the dominant TE modes of the DLSG, compare with those of

DTSG and examine the effect of partial overlapping of septa. The

bandwidth is calculated from the cutoff wavelengths of the first two

TE modes having their E-field polarized parallel to the Y-axis in

the septa gap. We refer to them as the first and second bandwidth

determining modes and refrain from using any modal nomenclature

since the structures do not have any symmetry plane. These modes

correspond to the TE,0 and TE20 hybrid modes, respectively, of

ridged [9] and T-septa waveguides [1]. The theoretical results in-

dicate the possibility of marked improvement over the character-

istics of DTSG when L-shaped septa are used in the proposed con-

figurations.

11. ANALYSIS

The TE eigenvalue equation of DLSG2 was derived using the

Ritz-Galerkin technique as was done in the case of T-septa wave-

guides [1], [2]. The DLSG configurations consist of longitudinal

apertures cascaded in both X- and Y-directions and are treated by

a variation of the analysis in [1]. The formulation basically in-

volves the derivation of the coupled integral equations for the un-

known electric fields over the apertures.

The steps involved in the analysis are outlined below.

1) In the seven different subregions of the cross section (Fig.

1(b)) the h, (x, y) and eY(x, y) components of the TE basis fields

[9] are written in appropriate expanded forms.

2) Let the unknown aperture electric fields as functions of y be

denoted by

(i) El(y), x = R, O~y<b3

(ii) E2(y), x = R + c, O<y<bl

(iii) Eq(y), x = R + c, bz<y<b~

(iv) El(y), x = R + c,+ s, bzsy<b~

(v) EJy), X = R + c + s, b4<y<b

(vi) Eb(y), x = a – R, b~sysb.

By matching eY(x, y) to the unknown electric field El(y) over the

ith aperture, i = 1, 2, . . . 6, from left and right hand sides, the

coefficients of expansions (in step 1) can be expressed in terms of

E,.

3) Six equations are obtained from the continuity of h, over the

apertures. When the expansion coefficients in these equations are

eliminated by using the expressions derived in step 2, six coupled

summation-integral equations are obtained.

4) To solve the integral equations by the Galerkin’s method the

following expansions of the unknown aperture fields E, ( y) are sub-

stituted in the following equations:

(1)

(2)

(3)

5) Then taking inner product of the equations with appropriate

basis functions, the integral equations are transformed into six sets

of homogeneous equations in the unknown coefficients A,n, i = 1,

2, . . . 6 (see the Appendix).

Equations (A 1)-(A6) can be put into matrix form

[F(kc)]4 = o (4)

where

~ = [A:A?A;A:~T~:]T (5)

and [F] is a square matrix of size 2(N1 + Nz + N3 ) + 6. The TE

eigenvalues are then given by the roots of the equation

det [F(kC )] = O. (6)

III. RESULTS OF NUMERICAL COMPUTATION

Eigenvalues of the lowest and the first higher order bandwidth

determining modes of DLSG2 were computed from the roots of (6).

In (A 1)-(A6) the parameters N,, Nz and N3 determine the number

of terms in the expansions of the electric fields in the apertures 1,

2 and 3, respectively and also 6, 5 and 4, respectively; Ml and M~

define the number of terms in the trough field expansions (subre-

gions I and II, respectively, and also VII and VI, respectively).

Computation of XC,/a and XC2/a, the normalized cutoff wave-

lengths of the first two bandwidth determining modes, was carried

out with N, = Nz = N3 = 10 and Ml = Mz = 20. For these pa-

rameter values, the relative convergence effect was found to be

insignificant for practical purposes.

Although DLSG1 can be looked upon as a special case of DLSG2

with c = O, we refer to them as separate structures so that DLSG2

would denote configurations of partially overlapped septa (c > O)

only. For either structure the septa-width parameters/a is defined

as the normalized overlap width. In DLSG 1, variation of s/a is

accompanied by simultaneous variation of R/a such that 2R + s

= a (constant), that is, the locations of the septa bases also change

with the septa width. In DLSG2, however, R/a is kept fixed and
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Fig. 2. Normalized cutoff wavelength AC,/a versus normalized septa width

sla. bla = 0.50, tlb = 0.05, w/a = 0.10. DLSG1,
-“----”------ DTSG.
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Fig. 3. Bandwidth Ac,/~,, versus s/a. b/a = 0.50, t/b = 0.05, w/a =
0.10. DLSG1, ----------- DTSG.

the overlap width s/a is varied by changing the septa dimensions

such that s + 2C = a – 2R (constant).

Figs. 2 and 3 show the variation of AC,/a and bandwidth ACI/AC2,

respectively, for DLSG 1 together with those of DTSG [1] for com-

parison. The cutoff characteristics of the two structures are similar,

DLSG1 showing larger values of XC]/a, particularly for larges /a

and gap-width d/b. The bandwidth characteristics of the two strtrc-

tures are also not much different below s/a = 0.4. The DLSG1

peaks are slightly higher and a little shifted toward lower values of

s/a compared to DTSG. But beyond the peaks and for higher val-

ues ofs /a, the improvement in bandwidth with L-shaped septa’is

significant. The difference in the variation of the bandwidth of the

two structures can be seen from the AC2/a versus s/a characteris-

tics, shown in Fig. 4. The ACZ/a of the two stmctures has nearly

the same values up to s/a = 0.4 and then for DLSG 1 it increases

at a much slower rate than DTSG, thereby producing larger modal

separation.

When compared with DLSG1, the hCI /a of DLSG2 (Fig. 5)

shows further increase. The two curves coincide for the value of

s/a which makes c/a = O. This improvement is expected since

for the same value of the septa-width parameter s/a, the DLSG2

configuration provides larger capacitive loading. The bandwidth

/
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Fig. 4. Normalized cutoff wavelength versus s/a for the first higher order

bandwidth determining mode. b/a = 0.50, d/b = 0.20, t/b = 0.05, w/a
= 0.10. R/a = 0.04 for DLSG2. DTSG, -----------
DLSG1, -.–. -.–. -.-. -.. DLSG2.
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Fig. 5. Ac, /a versus s/a of L-Septa guides. DLSG2,
----------- DLSG1. Parameters as in previous figures.

Fig. 6. kC1/kc2 versus s/a of L-Septa guides. ----------- DLSG1,

DLSG2. Parameters as in previous figures.

characteristics of DLSG2, however, depend on the additional Pa-

rameter R/a. As shown in Fig. 6, for the particular chosen value

of R/a = 0.04, the DLSG2 bandwidth is much lower for s/a <

0.4 and also shows less peaking. It becomes comparable to that of

DLSG1 only for larger values of s/a, that is, when the DLSG2

configuration approaches DLSG 1.

To find out if this deficiency of DLSG2 can be rectified, we ex-

amine the effect of the parameter R/a, that is, the location of the

septa base while the septa overlap width s/a is held constant. As
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Fig. ‘7. Variation of&, /a and LC1/kC, with R/a for DLSG2. d/b = 0.2.

Other parameters as in previous figures.

shown in Fig. 7, the kc, /a of DLSG2 increases slowly with de-

creasing R/a or increasing c/a, while the bandwidth shows a more

pronounced variation. These results indicate that for small values

of s/a, the DLSG2 bandwidth can be made to exceed that of

DLSG1, although marginally, with suitable choice of R/a or c/a.

IV. CONCLUSION

New rectangular waveguides with two L-shaped septa attached

to the broad walls in antipodal configuration have been examined

theoretically. The cutoff and bandwidth characteristics have been

derived by the Ritz-Galerkin technique and compared with those

of Double T-Septa Guide reported earlier. With respect to both,

the type DLSG1 offers significantly improved characteristics. Not

only is the cutoff wavelength of the dominant mode larger, but the

bandwidth, too, remains large over a wide range of values of the

septa widths/a thereby simplifying the optimization problem. The

cutoff and bandwidth characteristics of DLSG2 are not much dif-

ferent from those of DLSG 1 for large values ofs /a (> 0.4). How-

ever, for smaller values of s/a, the characteristics of the two con-

figurations can be made comparable by suitable choice of the

parameter R/a or c/a.

APPENDIX

The six sets of homogeneous equations in the unknown coeffi-

cients A,n, i = 1, 2, . . . 6, from which the eigenvalue (6) in Sec-

tion II is derived, are given below:

N2 N3

+ .~o~2n(–rpz2mp) + ~~o~3n(–~p13.p) = 0 (Al)

wherep =0, 1,2, . . .N1.

M!

~~o A1n(-rnIIPn) + “~o A,n
(

~~o qnt 12~In12nm

“pn~) ‘n:oA3n(m:oqm’2pm’3nm) =
o (A2)

(A3)

wherep = O, 1,2, . . . N3.

(
~~o .43. (-h. w,) + ~;. A,. (– 1)(’+ ‘) ~:. qtnLpm km

“pup) ‘.$oA5n((-l)pm$oqm’3pm’,nm)

N’I

+ ~~o A6n(–(–l)prn13pn) = O (A4)

(A5)

wherep =0, 1,2, . . . N2.

N, N,

~~oA,n (-(- l)nrPZ3nP) + ~~o A,ti (-rP12np )

wherep = O, 1,2, . . . N1.

Various terms in (A1)-(A6) are defined as follows:

k~lm + (m~/b)2 = k~z~ + (mx/b3 )2

= k~~m + (mm/b1)2

—— k& + (m~/d)2 = k: = (2 T/AC)2

Um = cot kX1mR/(cmbkX1m )

rm = (kZ2msin kxzmc ) -1

q~ = r~ cos kxz~ c/(e~bs )

‘m = qm (em ~3 )2

v. = Wm Cos k,4ms

fm = %h cot kxs~g/kX3m

em =l(m= O); l/2(m # O)

J
h .

I,u = , COSf(y – b3)cos J~(y – b)dy
3

J

b,

12,1 = , cos:(y– bl)cos~fl(y-b, )dy
1 b3

J

b~ .

131] = b, COS:(y – b2) COSJz(y – b~)dy.
b,
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Matrix Theory Approach to Complex Waves

Michal Mrozowski and Jerzy Mazur

Abstract—Complex waves in shielded Iossless inhomogeneous iso-
tropic guides are investigated. A critical appraisal of the existing the-
ory of complex waves is given and new approach is proposed. A math-
ematical condition for the existence of complex waves is derived using
the properties of a generalized symmetric matrix eigenvalue problem.

It is shown that complex waves may exist in slightly perturbed homo-

geneous guides as a result of the coupling of a pair of degenerate or
nearly degenerate modes.

I. INTRODUCTION

Complex waves are the modes guided by shielded lossless guides

which have complex propagation constants despite the lossless na-

ture of the structure. A first theory of complex waves was published

by Chomey as early as in 1961 [7], in a research report devoted to

the properties of waves supported by anisotropic bidirectional

guides. Complex waves do not exist in hollow cylindrical guides

and initially it was believed that lossless shielded uniform dielec-

tric guides can not generally support modes with complex propa-

gation constants [6]. Pioneering work by Clarricoats and coworker8

[14] -[16] proved that complex waves can be excited in a circular

waveguide containing a coaxial dielectric rod. Similar result was

obtained indepeudently by Belyantsev and Gaponov [9] who dis-
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covered complex waves in coupled lines. Since then complex and

backward waves in a circular waveguide containing a dielectric rod

have been the subject of thorough numerical investigations [14]-

[23]. It was established that complex waves may only be excited if

the perrnittivity of the dielectric rod is high enough. It was also

found that a complex wave carries no power and the existence of

complex waves was finally confirmed experimentally [4]. These

detailed studies published now and again in the literature were ac-

companied by theoretical consideration which gave deeper insight

into the nature of complex waves [5], [8].

In the 1980’s the scope of ‘the research into inhomogeneous

guides broadened and complex waves were reported for a variety

of waveguiding structures including dielectric image guide [24]–

[25], microstnp [27], [31], [32] and fin line [10], [31]. An inter-

esting result was obtained by Omar and Schunemann [12], [13]

who proved that although a single complex wave carries no power,

two complex waves forming a pair are not orthogonal with respect

to cross power and consequently a pair as a whole behaves as a

mode below cutoff carrying purely reactive power. It was also found

that in certain structures, “for instance in a rectangular image guide

investigated by Strube and Amdt [24], it is possible to obtain com-

plex waveg even if the perturbation caused by inhomogeneity is

relatively small. The attention which complex waves have received

recently is primarily due to the role which they play in the discon-

tinuity analygis. Investigations have shown that complex waves

constitute an essential part of modal spectrum and their omission

may lead to erroneoug results in certain discontinuity problems [12],

[28] -[31].

The intensive studies into the complex waves resulted in 1987 in

a paper [13] by Omar and Schunemann which was intended as a

general treatment of complex waves. Clmar and Schunemann’s 1987

paper use the approach similar to the one u8ed in Chomey’s 1961

report. In both cases the original boundary value problem was con-

verted into a matrix eigenvalue problem but using slightly different

techniques (It can be shown [33] that the two approaches are iden-

tical for infinite matrix dimensions). Chomey concentrated his work

on the derivation of iutegral relations for complex waves. Omar

and Schunemann proposed using the symmetry of the characteristic

matrix as a criterion for the existence of complex waves. In this

contribution we will show that some of Omar and Schiinemann’s

conclusions are premature and propose a more rigorous approach

to complex waves.

II. MATHEMATICAL FORMULATION

As a departure point for the analysis we shall use the matrix

formulation derived by Omar and Schunemann [13] who investi-

gated a general lossless structure of a uniform waveguide inho-

mogeneously filled with a dielectric whose relative perrnittivity was

a function of transverse coordinates (E, = e,(r)). The fields in the

guide were assumed to have the z dependence in the form e-JPZ,

and expanded in series of normalized longitudinal components of

TM and TE modes existing in the empty wavegttide [1 1], [13]. The

expansion coefficients and the propagation constants of the modes

supported by the loaded guide can be obtained from the following

matrix eigenvalue equation (eq. 12 in [13]):

(1)
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