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Fig. 3. Numerical experiment reflection coefficient for a microstrip line.
Solid line: first order ABC, ¢, = 7.12. Dotted line: first order ABC, ¢,
= 8.12. Dashed line: DBC, ¢4 = 7.12, €5, = 8.50.

tion domain for both DBC and Mur’s boundary condition. In the
DBC, ¢, = 7.12 and ¢, = 8.50 are used to determine the two
velocities. In Mur’s first-order ABC, €, = 7.12, 8.12 are used to
determine the velocity, respectlvely From this result we see that
in the time domain the reflections from the computation domain
boundary are greatly reduced using DBC: in fact, DBC reflections
are an order of magnitude less than those from the first-order
boundary conditions. The numerical reflection coefficients for both
DBC and the first-order boundary conditions are given in Fig. 3.
This figure shows that DBC absorbs the wave over a large fre-
quency band, i.e., the reflection coefficient is less than —45 dB
from 0 to 20 GHz, where ¢,,71 = 7.12 and ¢,.4, = 8:50 are used
for the DBC. For the first-order condition, the reflection coeffi-
cients are less than —45 dB only over the ranges from 0 to 3 GHz
when ¢, = 7.12, or from 5 to 8 GHz when ¢, = 8.12.

1V. CoNCLUSION

The dispersive boundary condition allows the dispersion of waves
to be incorporated into the design of an absorbing boundary con-
dition. This feature can be very useful when the dispersion for a
major outgoing wave is known. Both the validity and the efficiency
of the DBC have been demonstrated by carrying out analyses on a
microstrip line. With DBS, the memory requirement for FD-TD
analyses of microstrip components and antennas can be greatly re-
duced.

The main difference between DBC and ABC is that DBC is de-
signed to optimize the boundary condition according to the disper-
sion characteristics of waves, while ABC is designed to optimize
the boundary condition according to the propagation direction of
the waves. The introduction of the concepts which are the basis of
DBC is specially important for study of absorption for strongly
dispersive waves, such as occurs in conductor waveguides and di-
electric waveguides. The further application of the proposed DBC
to waveguide component analysis has been investigated in a sepa-
rate paper [10]. Based on the ideas presented in this paper, some
ABC’s can be modified into DBC’s.
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New Broadband Rectangular Waveguide with
L-Shaped Septa

Pradip Kumar Saha and Debatosh Guha

Abstract—Rectangular waveguides with double L-shaped septa—
variants of Double T-Septa Guides (DTSG) [1], [2]—have been ana-
lyzed theoretically and are proposed as new broadband waveguides.
Results indicate that significant improvement in cutoff wavelength and
bandwidth in particular should be available with L-shaped septa in
antisymmetric configuration.

’

I. INTRODUCTION

Recently rectangular waveguides with T-shaped septa have been
proposed as alternative to ridged waveguides [1], [2]. Theoretical
analysis using the Ritz-Galerkin technique showed that the lowest
TE mode of such a guide has superior cutoff, bandwidth and
impedance characteristics. It was further shown theoretically that
dielectric loading of the septa-gap can itnprove the cutoff and band-
width significantly [3]. Experimental verification of these proper-
ties and formulations of the problems by other miethods have been
reported in the literature [4]-[8].

In this paper we propose another type of broadband septum
waveguides—a variant of the previously reported Double T-Septa
Guide (DTSG) [1]. These guides have L-shaped septa located an-
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Fig. 1. (a) Double L-Septa Guide: DLSG1. (b) Double L-Septa Guide:
DLSG2. The cross section is divided into subregions I-VII. The apertures
are marked 1-6.

tisymmetrically as shown in Fig. 1. We propose to call them Dou-
ble L-Septa Guides (DLSG). The guide in Fig. 1(a) has two com-
pletely overlapping septa and will be referred to as DLSG1. The
other type, shown in Fig. 1(b), has two antisymmetric partially
overlapping septa and will be referred to as DLSG2.

We present the theoretical cutoff and bandwidth characteristics
of the dominant TE modes of the DLSG, compare with those of
DTSG and examine the effect of partial overlapping of septa. The
bandwidth is calculated from the cutoff wavelengths of the first two
TE modes having their E-field polarized parallel to the Y-axis in
the septa gap. We refer to them as the first and second bandwidth
determining modes and refrain from using any modal nomenclature
since the structures do not have any symmetry plane. These modes
correspond to the TE,; and TE,, hybrid modes, respectively, of
ridged [9] and T-septa waveguides [1]. The theoretical results in-
dicate the possibility of marked improvement over the character-
istics of DTSG when L-shaped septa are used in the proposed con-
figurations.

II. ANALYSIS

The TE eigenvalue equation of DLSG2 was derived using the
Ritz-Galerkin technique as was done in the case of T-septa wave-
guides [1], [2]. The DLSG configurations consist of longitudinal
aperatures cascaded in both X- and Y-directions and are treated by
a variation of the analysis in [1]. The formulation basically in-
volves the derivation of the coupled integral equations for the un-
known electric fields over the apertures.

The steps involved in the analysis are outlined below.

1) In the seven different subregions of the cross section (Fig.
1(b)) the &, (x, ¥) and e,(x, y) components of the TE basis fields
[9] are written in appropriate expanded forms.

2) Let the unknown aperture electric fields as functions of y be
denoted by

() Ei(),
(i) Ex(»), x=R+¢c, 0

x=R, 0=<y=b

IA
~

IA
=

(i) Ex(3), x=R+c, b <y=<b

(iv) Ex(y), x =R + C(+ s, b, <y =< b,
W) Es(y), x=R+c+s, by=y=<bh
(i) E(y), x=a—R, by,<y<h.

By matching ¢, (x, y) to the unknown electric field E,(y) over the
ith aperture, { = 1, 2, - - - 6, from left and right hand sides, the
coefficients of expansions (in step 1) can be expressed in terms of
E,.

3) Six equations are obtained from the continuity of &, over the
apertures. When the expansion coefficients in these equations are
eliminated by using the expressions derived in step 2, six coupled
summation-integral equations are obtained.

4) To solve the integral equations by the Galerkin’s method the
following expansions of the unknown aperture fields E, (y) are sub-
stituted in the following equations:

N

nw

E\(y) = 2, Ay cos 5= (v = by) M
& nw

Ex(y) = 2 Ay cos == (y = by) @

5 n=0 "5 by 4

e nw

Ex(y) = 21 Ay cos — (y — by). 3)
1 n=0 4 d

5) Then taking inner product of the equations with appropriate
basis functions, the integral equations are transformed into six sets
of homogeneous equations in the unknown coefficients A,,, i = 1,
2, » -+ 6 (see the Appendix).

Equations (A1)-(A6) can be put into matrix form

[F(k)4 =0 @
where
A = [A]ATAATATALYT )

and [F] is a square matrix of size 2(N; + N, + N3) + 6. The TE
eigenvalues are then given by the roots of the equation

det [F(k,)] = 0. 6)

III. ResurLts oF NUMERICAL COMPUTATION

Eigenvalues of the lowest and the first higher order bandwidth
determining modes of DL.SG2 were computed from the roots of (6).
In (A1)-(A6) the parameters N, N, and N; determine the number
of terms in the expansions of the electric fields in the apertures 1,
2 and 3, respectively and also 6, 5 and 4, respectively; M, and M,
define the number of terms in the trough field expansions (subre-
gions T and II, respectively, and also VII and VI, respectively).
Computation of N\, /a and A, /a, the normalized cutoff wave-
lengths of the first two bandwidth determining modes, was carried
out with Ny = N, = N3 = 10 and M; = M, = 20. For these pa-
rameter values, the relative convergence effect was found to be
insignificant for practical purposes.

Although DLSGI1 can be looked upon as a special case of DLSG2
with ¢ = 0, we refer to them as separate structures so that DLSG2
would denote configurations of partially overlapped septa (¢ > 0)
only. For either structure the septa-width parameter s /a is defined
as the normalized overlap width. In DLSG1, variation of s/a is
accompanied by simultaneous variation of R/a such that 2R + s
= g (constant), that is, the locations of the septa bases also change
with the septa width. In DLSG2, however, R/a is kept fixed and
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Fig. 2. Normalized cutoff wavelength A, /a versus normalized septa width
s/a. bj/a = 0.50, t/b = 0.05, w/a = 0.10. DLSG1,
——————————— DTSG.
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Fig. 3. Bandwidth \,; /N, versus s/a. b/a = 0.50,t/b = 0.05, w/a =
0.1, ——— DLSGl, -~ ——————~~—- DTSG.

the overlap width s /a is varied by changing the septa dimensions
such that s + 2¢ = a — 2R (constant).

Figs. 2 and 3 show the variation of N.; /a and bandwidth A.; /Az,
respectively, for DLSG1 together with those of DTSG [1] for com-
parison. The cutoff characteristics of the two structures are similar,
DLSG1 showing larger values of A, /a, particularly for large s /a
and gap-width d/b. The bandwidth characteristics of the two struc-
tures are also not much different below s/a = 0.4. The DLSG1
peaks are slightly higher and a little shified toward lower values of
s /a compared to DTSG. But beyond the peaks and for higher val-
ues of s/a, the improvement in bandwidth with L-shaped septa\is
significant. The difference in the variation of the bandwidth of the
two structures can be seen from the N\, /a versus s/a characteris-
tics, shown in Fig. 4. The A /a of the two structures has nearly
the same values up to s /a = 0.4 and then for DLSG1 it increases
at a much slower rate than DTSG, thereby producing larger modal
separation.

When compared with DLSG1, the A\, /a of DLSG2 (Fig. 5)
shows further increase. The two curves coincide for the value of
s/a which makes ¢/a = 0. This improvement is expected since
for the same value of the septa-width parameter s/a, the DLSG2
configuration provides larger capacitive loading. The bandwidth
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Fig. 4. Normalized cutoff wavelength versus s /a for the first higher order
bandwidth determining mode. /a = 0.50,d/b = 0.20,¢/b = 0.05, w/a
= 0.10. R/a = 0.04 for DLSG2. DTSG, ——~—-—~===~
DLSGl, -+ —+~+—+—+-+--.  DLSG2.
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Fig. 5. Na/a versus s/a of L-Septa guides. DLSG2,
——————————— DLSG1. Parameters as in previous figures.
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DLSG2. Parameters as in previous figures.

characteristics of DLSG2, however, depend on the additional pa-
rameter R /a. As shown in Fig. 6, for the particular chosen value
of R/a = 0.04, the DLSG2 bandwidth is much lower for s/a <
0.4 and also shows less peaking. It becomes comparable to that of
DLSGI1 only for larger values of s/a, that is, when the DLSG2
configuration approaches DLSG1.

To find out if this deficiency of DLSG2 can be rectified, we ex-
amine the effect of the parameter R /a, that is, the location of the
septa base while the septa overlap width s/a is held constant. As
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Fig. 7. Variation of A, /a and A\, /A, with R/a for DLSG2. d/b = 0.2.
Other parameters as in previous figures.

shown in Fig. 7, the N\, /a of DLSG?2 increases slowly with de-
creasing R /a or increasing ¢ /a, while the bandwidth shows a more
pronounced variation. These results indicate that for small values
of s/a, the DLSG2 bandwidth can be made to exceed that of
DLSG1, although marginally, with suitable choice of R/a or c/a.

IV. CONCLUSION

New rectangular waveguides with two L-shaped septa attached
to the broad walls in antipodal configuration have been examined
theoretically. The cutoff and bandwidth characteristics have been
derived by the Ritz—Galerkin technique and compared with those
of Double T-Septa Guide reported earlier. With respect to both,
the type DLSG1 offers significantly improved characteristics. Not
only is the cutoff wavelength of the dominant mode larger, but the
bandwidth, too, remains large over a wide range of values of the
septa width s /a thereby simplifying the optimization problem. The
cutoff and bandwidth characteristics of DLSG2 are not much dif-
ferent from those of DLSG1 for large values of s /a (>0.4). How-
ever, for smaller values of s /a, the characteristics of the two con-
figurations can be made comparable by suitable choice of the
parameter R /a or ¢/a.

APPENDIX

The six sets of homogeneous equations in the unknown coeffi-
cients A,,, i = 1,2, - - - 6, from which the eigenvalue (6) in Sec-
tion II is derived, are given below:

N M,
MZO AI”<mZO umllpm Ilnm + 6npl‘p>

Ny N3
2y A (—rphay) + 3 Ay (<1 ky,,) = O (AD)
wherep =0,1,2, - -+ N,.
Ni N2 M2
nZ:O Aln(_rnl’lpn) + nZ:O A2n<mzz;0 qume Ian
N M
+ apnf;‘;> + ngﬂ A3n<m2=:0 qume I3nm> =0 (A2)

wherep =0,1,2, -+ N,.

Ni N2 M
"ZJO Ay (—rn13pn) + ngﬂ A2n<m§0 qu3pm I2nm>

N3 M,
+ ng() A3n<m2=30 dm I3pm I3nm + 6np Up>
N3

+ 2 Auy(=8,,w,) = 0 (A3)

wherep =0,1,2, - -+ Ns.

N N3 M
25 As (—=8,,w,) + P2 A4,,<(-1)"’+") [DIN sy -

Na M)
+ 6np vp> + n‘i:;() A5n<(—1)p mgt) qml3pm Ian>
Ny

+ 2 Ag(=(=1)"r,]3,,) = 0 (A%)

wherep =0,1,2, - -+ N,
N3 M2
n>=:0 A4n<(_ 1)" mZ=:0 9 Ime I3nm>

Ny M
+ ngo A5n<m2=30 qm12pm Ilnm + Bnpfp)
N

+ 20 Ag (=Talopn) = 0 (AS)

wherep =0,1,2, - - N,.
N2

N3
nZ:O A (= (=D b)) + ,Z)O Asy (=1p15,)

Ni M
+ 2 A6n<m2=)0 ULy Dy + 5,,,,t,,> =0 (A6)

wherep =0,1,2, - - - N|.
Various terms in (A1)-(A6) are defined as follows:

kiim + (mm /bY = ki, + (mw/by)?
= ki, + (mw/b)’
= kigm + (mr/d) = k2 = @7 /\.)?
= €Ot Ky R/ (€ Dy )

=
I

— : —~1
Tm = (kx2m sin kx2m C)

Iy COS k}ch C/(embii)

Q
3
I

m = 4m (Emb3 )2

Wy = €y d/(kx4m sin kx4m S)

-
|

Um = Wy, COS Ky §
fm = 6mbl cot kx3mg/kx3m
& =1(0m = 0); 1/2 (m # 0)

bs . .
iT T
Il,j = So cos b_3 (y — b3) cos% (y — bydy

by . ,
T s
L, = So cos _bl (y — b)) cosjb—3 (y — b3) dy

b3 . ;
in JT
L, = sz cos — (y — by) cos b_3 (y — b3) dy.
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Matrix Theory Approach to Complex Waves

Michal Mrozowski and Jerzy Mazur

Abstract—Complex waves in shielded lossless inhomogeneous iso-
tropic guides are investigated. A critical appraisal of the existing the-
ory of complex waves is given and new approach is proposed. A math-
ematical condition for the existence of complex waves is derived using
the properties of a generalized symmetric matrix eigenvalue problem.
It is shown that complex waves may exist in slightly perturbed homo-
geneous guides as a result of the coupling of a pair of degenerate or
nearly degenerate modes.

I. INTRODUCTION

Complex waves are the modes guided by shielded lossless guides
which have complex propagation constants despite the lossless na-
ture of the structure. A first theory of complex waves was published
by Chorney as early as in 1961 [7], in a research report devoted to
the properties of waves supported by anisotropic bidirectional
guides. Complex waves do not exist in hollow cylindrical guides
and initially it was believed that lossless shielded uniform dielec-
tric guides can not generally support modes with complex propa-
gation constants [6}. Pioneering work by Clarricoats and coworkers
[14]1-[16] proved that complex waves can be excited in a circular
waveguide containing a coaxial dielectric rod. Similar result was
obtained independently by Belyantsev and Gaponov [9] who dis-
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covered complex waves in coupled lines. Since then complex and
backward waves in a circular waveguide containing a dielectric rod
have been the subject of thorough numerical investigations [14]-
[23]. It was established that complex waves may only be excited if
the permittivity of the dielectric rod is high enough. It was also
found that a complex wave carries no power and the existence of
complex waves was finally confirmed experimentally [4]. These
detailed studies published now and again in the literature were ac-
companied by theoretical consideration which gave deeper insight
into the nature of complex waves [5], [8].

In the 1980’s the scope of the research into inhomogeneous
guides broadened and complex waves were reported for a variety
of waveguiding structures including dielectric image guide [24]-
[25], microstrip [27], [31], [32] and fin line {10}, [31]. An inter-
esting result was obtained by Omar and Schiinemann [12], [13]
who proved that although a single complex wave carries no power,
two complex waves forming a pair are not orthogonal with respect
to cross power and consequently a pair as a whole behaves as a
mode below cutoff carrying purely reactive power. It was also found
that in certain structures, for instance in a rectangular image guide
investigated by Strube and Arndt [24], it is possible to obtain com-
plex waves even if the perturbation caused by inhomogeneity is
relatively small. The attention which complex waves have received
recently is primarily due to the role which they play in the discon-
tinuity analysis. Investigations have shown that complex waves
constitute an essential part of modal spectrum and their omission
may lead to erroneous results in certain discontinuity problems [12],
[28]-[31]. :

The intensive studies into the complex waves tesulted in 1987 in
a paper [13] by Omar and Schiinemann which was intended as a
general treatment of complex waves. Qmar and Schiinemann’s 1987
paper use the approach similar to the one used in Chorney’s 1961
report. In both cases the original boundary value problem was con-
verted into a matrix eigenvalue problem but using slightly different
techniques (It can be shown [33] that the two approaches are iden-
tical for infinite matrix dimensions). Chorney concentrated his work
on the derivation of integral relations for complex waves. Omar
and Schiinemann proposed using the symmetry of the characteristic
matrix as a criterion for the existence of complex waves. In this
contribution we will show that some of Omar and Schiinemann’s
conclusions are premature and propose a more rigorous approach
to complex waves.

II. MATHEMATICAL FORMULATION

As a departure point for the analysis we shall use the matrix
formulation derived by Omar and Schiinemann [13] who investi-
gated a general lossless structure of a uniform waveguide inho-
mogeneously filled with a dielectric whose relative permittivity was
a function of transverse coordinates (e, = ¢,(r)). The fields in the
guide were assumed to have the z dependence in the form ™%,
and expanded in series of normalized longitudinal components of
TM and TE modes existing in the empty waveguide [11], [13]. The
expansion coefficients and the propagation constants of the modes
supported by the loaded guide can be obtained from the following
matrix eigenvalue equation (eq. 12 in [13]):

[ *3 — STHR* —wpg/NKGL — STHT [ 4’ _ g
_weo)\zT k(Z)I__eh — éh Ql - ..B'

ey
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